M.SC Environmental Science

Set No. 1

Question Booklet No.

16P/290/7

	(To be fi)					
Roll No.							
Serial No.	of OMR	Answer She	et	ode N	(4	89)	
Day and 1		•••••••••••••••••••••••••••••••••••••••	(0	2014)		(Signat	ture of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 48

[**उपर्युक्त निर्देश हिन्दी में** अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK एफ कार्य

No. of Questions: 180

Time: 2 Hours Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This Question Booklet comprises two Sections viz.. Section-A and Section-B:

Section-A: This is compulsory. This contains two sub-sections having question of **two** disciplines viz.

(i) Basic Environmental Science

(ii) Chemistry

A candidate is required to attempt above both all sub-sections are compulsory.

Section-B: This contains three Sub-sections having questions of three disciplines viz.,

- (i) Life Science
- (ii) Physics
- (iii) Geology

A candidate is required to attempt only **one** from above three Sub-sections.

SECTION - A

(i) BASIC ENVIRONMENTAL SCIENCES

(Compulsory for all)

01.	Whi	ch region of the sea oceans are	e the	most polluted?
	(1)	Estuarine	(2)	Sea depths
	(3)	Sea surface	(4)	Coastal
02.	Den	nography is the statistical stud	ly of :	· ·
	(1)	Bird population	(2)	Human population
	(3)	Human Society	(4)	Human Life
03.	Larg	gest salt water lake in India is	:	
	(1)	Chilka	(2)	Lonar
	(3)	Wullar	(4)	Sambhar
			_	
04.	Whi	ich elemental cycle has no atn	nosph	neric reservoir
	(1)	Oxygen	(2)	Carbon
	(3)	Phosphorus	(4)	Nitrogen
05.	Cor	ncept of ecological pyramid wa	s give	en by:
		A.G. Tansley		E.P. Odum
	(3)		(4)	C. Elton

06.	Hov	w many mega	-bio	diverse	countrie	s have been	ident	ified	in	the
	wor	ld ?								
	(1)	12	(2)	17	(3)	24	(4)	35		
07.	Eco	logical of phy	siolog	ical rac	es are als	so known as	:			72
	(1)	Ecads			(2)	Ecotypes				
	(3)	Ecophens			(4)	Ectogens				
08.	Max	timum amour	nt of r	adiatio	n per uni	t area is rece	eived ir	the		
122					. per um					
	(1)	Tropical regi	on		(2)	Temperate	region			
	(3)	Higher latitu	ıde		(4)	Mid latitud	e			1 90
09.	Eco	systems regul	ation	in natu	are is call	led:				
	(1)	Homeostasis		e.	(2)	Succession				
	(3)	Cybernetics			(4)	Ecosystem	functio	n		
10.	The	wave length o	of the	atmosn	heric wir	adowe is .				
					MCHC WII	100WS 15.				
	(1)	4.0 - 6.0 д	100		(2)	2.0 - 5.0 μ				
	(3)	8.0 - 13.0 μ			(4)	7.0 - 10.0 μ				
							N 8			

11.	Gove	ernment of India has enacte	ed va	rious Acts for protection &						
	cons	servation of environment. How	ever,	more inclusive Act is :						
	(1)	Water (Prevention & Control	of Pol	lution) Act 1974						
	(2)	Air (Prevention & Control of F	Pollut	ion) Act 1981						
	(3)	The Biological Diversity Act 2	002							
	(4)	Environment (Protection) Act	1986	5						
			~	to 1tand concerned on t						
12.	Rich	ael Carsson in her book Silen	t Spri	ing has raised concerned on .						
	(1)	Economical & social impacts								
	(2)	Impacts of agro-chemicals on	ecol	ogical functions						
	(3)	eforestation								
	(4)	Climate change								
13.	Red	ox titration is used in determi	natio	on of:						
	(1)	Dissolved oxygen	(2)	Total hardness						
	(3)	Chemical oxygen demand	(4)	Biochemical oxygen demand						
14.	Con	nvention on International Trac	le in	Endangered species was held						
	in:									
	(1)	1980	(2)	1973						
	(3)	1962	(4)	1986						

15.	. Sp	ecies - Area Curve is record of	:	
	(1)	Frequency and Area	(2)	Density and Area
	(3)	Number of species and Area	(4)	Abundance and Area
16	Ma	anna Tara ' II a		
10.	Ma	una Loa, in Hawaii is famous	for :	
	(1)	Botanical Gardens		
	(2)	Monitoring sea level rise sin	ce 19	950
	(3)	Biggest collection of mamma	al's fo	ossils
	(4)	Continuous monitoring atm	osph	eric CO, since 1957
				3
17.	Lar	gest source fresh water on ear	th is	:
	(1)	Rivers	(2)	Lakes
	(3)	Glaciers	(4)	Polar Ice
18.	"Ita	i Itai" disease is caused by :		
	(1)	Mercury	(2)	Cadmium
	(3)	Lead	(4)	Arsenic
••				
19.	Acet	yl choline esterase enzyme is	inhi	bited by:
43	(1)	Organophosphates	(2)	Triazine
	(3)	Phenylurea	(4)	Organomercurals
				F 2

20.	The	The Headquarter of UNEP is located at:										
	(1)	Paris	(2)	Rio de Jenerio								
	(3)	Narobi	(4)	Geneva								
21.	Perr	nafrost soil is characteristic of	:									
	(1)	Tundra biome	(2)	Taiga biome								
	(3)	Tropical rain forest	(4)	Savannah								
		·										
22.	The	biggest hindrance in using bio		5)								
	(1)	Lack of proven technology for	con	nmercialization								
	(2)	Energy yield is low										
	(3) Large land area is required to grow energy crops											
	(4)	Air pollution due to combust	ion	er e								
22	U/h	ich of the following category of	of pla	ants get benefited more due to								
40.			- 1									
	CIC	vation of CO ₂ level ?	(0)	O planta								
	(1)	C ₃ plants	(2)	C ₄ plants								
	(3)	CAM plants	(4)	All of the above								
		1 - + + (C) io										
24	. Th	e value of solar constant(S) is :										
	(1)	20 W/m^2	(2)									
	(3)	1732 W/m ²	(4)	1330 W/m ²								
		a e										

25.	The	second most important sour	rce a	fter fossil fuels contributing to
	Ind	ia's energy needs is:		
	(1)	Solar energy	(2)	Nuclear energy
	(3)	Wind energy	(4)	Hydropower
26	337L			A. and the second and
4 0.		servation?	an E	x-Situ method of biodiversity
	COII	servation P		
15	(1)	Seed storage	(2)	Tissue culture
	(3)	Gene bank	(4)	All of the above
27.	Ran	asar convention on Wetland I		otional Improved as is a Constitution
			ntern	ational Importance is effective
	sino	ce:		1
25	(1)	1992	(2)	1971
	(3)	1972	(4)	1974
28.	Nati	ural source of polycyclic arom	atic l	avdrocarbone (DAUs) is .
			une i	iyurocarbons (FAHS) is:
	(1)	Grass fire	(2)	Root exdudates
	(3)	Aerobic bacteria	(4)	Anaerobic bacteria
29.	Cina	abar is an ore of:		•=
	(1)	Iron	(2)	Monoco
		0.11	(2)	Mercury
	(3)	Gold	(4)	Lead

30. Most Productive zone in a freshwater Lake/Pond is:

(1) Profundal zone

(2) Limnetic zone

(3) Benthic zone

(4) Littoral zone

P.T.O.

(ii) CHEMISTRY

(Compulsory for all)

31.	The	molecular	structi	are of ozo	one is	sir	nilar to th	at of :		
	(1)	Chlorine	dioxide			(2)	Carbon	dioxide		
	(3)	Sulphur	trioxide		1	(4)	Borane			
32.		w many ge		oxygen w	vill be	ob	tained if o	one mole	of wate	er is
		y electroly:	sea?				9 10			**
	(1)	0.5 g	(2)	1 g	(3)	16 g	.(4)	32 g	
33.	The	bond angl	es in bo	oron trifl	uorid	e m	olecule ar	·e :		
	(1)	90°	(2)	1040	(3)	1090	(4)	120°	,
34.	The	bond diss	ociation	energy (of fluo	rin	e is :			
	(1)	Similar to	that of	chlorine	÷ (:	2)	Similar to	that of	bromin	e
	(3)	Similar to	that of	iodine	(4	4)	Highest a	mong th	ne halog	ens
35.	acid	ml of 0.1 M and the m	ixture t	itrated a	acid is	s ad t 0.	lded to 5m 2 M sodiu	l of 0.1 M	I sulphi Oxide, w	ıric hat
	(1)	7.5 ml	(2)	10 ml	(3)	15 ml	(4)	30 ml	
				. 1	1					

36.	A lis	t of which inc	cludes	s only ga	ases tha	t dissolve in w	rater to give	<i>ie</i>
	acid	ic solution is :	D.			7 7 7		
	(1)	CO ₂ , SO ₂ , SO) ₃ , HI		(2)	CO_2 , SO_2 , F_2 , N_2	2.	
	(3)	NO_2 , SO_2 , HI ,	F_2		(4)	CO ₂ , SO ₂ , SO ₃	, HBr	
37.	Wha	it is the best v	way to	describ	e the ge	eometry of XeF	4?	
	(1)	Spherical			(2)	Octahedral		
54.5	(3)	Tetrahedral			(4)	Planar		
					§ 20	4		
38.	The	anion and car	tion a	re iso-el	ectronic	in:		
	(1)	LiF	(2)	NaF	(3)	RbI	(4) CsCl	
39.	Whi	ch of the follo	wing	is not a	polymer	ric compound	?	
4	(1)	Starch			(2)	Cellulose		
	(3)	Melanin			(4)	Tryptophan	8	
						· · · · · · · · · · · · · · · · · · ·		
40.	Hov	v many unpai	red el	ectrons	are ther	e in an atom o	of C?	
	(1)	None	(2)	1	(3)	2	(4) 3	
•								
41.	Wh	ich of the follo	wing	is not a	parama	agnetic compou	and?	
	(1)	O ₂			(2)	NO_2		
	(3)	CuCl ₂			(4)	$C_6H_6^-$ (anior	1)	
٠	, ,	1		8				

an

74.	AA 119	at is the oxi	dation	number o	of Fe 11	n (NH ₄) ₃ [Fe(0	$(2N)_6$	
	(1)	+2	(2)	-2	(3)	+3	(4)	+4
43.	Wha	at is the C-I	l bond	-order in	benzei	ne:		,
	(1)	0 ,	(2)	1	(3)	1.5	(4)	2
44.	Ider	ntify the pair	in wh	ich both m	nolecu	les have sp²	hybridi	sed atoms :
	(1)	C ₂ H ₄ and (CO ₂		(2)	C ₆ H ₆ and	CHCl ₃	
	(3)	C ₂ H ₄ and (C_3H_4		(4)	HCN and	C_2H_2	
45.	Wha	at is the tot	al nur	nber of o	rbital	associated	with th	e principal
	qua	ntum numb	er, n=4	1.5				
	(1)	3	(2)	4	(3)	16	(4)	24
46.	The	name of de	Brogile	is associa	ated w	vith:		
	(1)	The uncert	ainty p	rinciple	(2)	Matter way	ves	
383	(3)	Atomic orbi	tals		(4)	Electron s	pin	353
47.	An e	lement crys	tallizes	s in FCC	lattice	. How man	y atoms	0== 41
	per ı	unit cell?			e e	8	atoms	are there
	(1)	1	(2)	2	(3)	3	(4)	
				10				

48.	A sample of water contains 200 ppm of Ca^{2+} in it. What is the molality										
	of th	ne solution wi	th res	pect to Ca	(at. w	rt. 40) ?					
***	(1)	0.2 m	¥		(2)	2 m		94			
	(3)	5 × 10 ⁻³ m			(4)	0.05 m					
								2			
49.	Cok	e is often use	d in e	xtractive m	etallı	ırgy. Its major	role	is:			
	(1)	As an oxidiz	ing ag	gent	(2)	As a reducing	g age	nt			
	(3)	As a fuel			(4)	To form slag					
							_				
50.	Whi	ch of the follo	owing	is not a cry	stalli	ne substance	5				
	(1)	Glass			(2)	Quartz		*			
	(3)	Chalk			(4)	Diamond		e			
					. 1	1) sto	?			
51.	Hov	w many neutr	ons a	re than in	the n	ucleus of a 170					
	(1)	6	(2)	8	(3)	9	(4)	11			
			oviete	in the +2	oxida	ation state in	all i	ts common			
52.			exists	III the 12	OAIG						
		pounds?	(0)	M.	(3)	Mo	(4)	Eu			
	(1)	Mn		Mg			, ,				
= 2	froi	m each pair g	given 1	oelow ident	ify th	e ion which is	sma	ller in size .			
33	, no	²⁺ , Fe ³⁺] [K ⁺ ,	Ca ²⁺]	[Na+, F-]	[Se ²⁻ ,	S ²⁻]:					
		Fe ²⁺ ,K ⁺ F ⁻ ,			(2)	Fe3+,Ca2+ Na	, S ²⁻				
	(1)	Fe ²⁺ , Ca ²⁺ ,	F- S6	2-	(4)	Fe ³⁺ ,K ⁺ Na ⁺ ,	Se ²⁻				
	(3)	Fez, Cas,	r , o	-	, ,		0.000				
				1	4	P					

54.	Whi	Which one of the following set contains one element each from se											
	bloo	ck, p-block ar	ıd d-l	olock?									
	(1)	Rb, K, Ru		3	(2)	Li, W, Bi			9				
	(3)	C, Cl, Sr		e e	(4)	Sc, Pd, Te			,				
55.	Whi	ch of the follo	owing	is not a	Lewis a	cid ?							
	(1)	S ²⁻	(2)	Zn²+	(3)	BF_3	(4)	Co³+	8				
56.	Pota	assium perma	angan	ate solut	ion may	y be standar	dised	by titra	ation				
	against:												
	(1)	Sodium carl	onat	e _.	(2)	Chromic ac	id						
	(3)	Phthalic acid	1,	k, v	(4)	Sodium oxe	late						
57.	Whi	ch of the follo	wing	compour	ids does	s not contain	a C=	O grou	p ?				
	(1)	Acetic acid			(2)	Formaldehy	de						
	(3)	Cyclobutano	ne		(4)	Furan	S¥						
58.	Whic	ch group is p	resen	t in a sec	ondary	amine ?							
	(1)	-NR ₂	(2)	-NHR	(3)	-NH ₂	(4)	=NH	9				

- **59.** For which one among the following reactions does ΔH^0 of the reaction represent an enthalphy of formation?
 - (1) $2H_2(g) + C(s) \rightarrow CH_4(g)$
 - (2) $2NO_2$ (g) $\rightarrow N_2O_4$ (g)
 - (3) $2N_2(g) + 3O_2(g) \rightarrow 2NO_2(g) + 2NO(g)$
 - (4) $CO_2(g) + H_2(g) \rightarrow H_2O(g) + CO(g)$
- 60. Consider the following three reactions:

$$NH_4NO_3(s) = N_2O(g) + 2H_2O(g)$$
 (1)

$$2H_2(g) + O_2(g) = 2H_2O(g)$$
 (2)

$$2H_2(g) + O_2(g) = 2H_2O(I)$$
 (3)

which statement regarding the entropy changes (ΔS) in the above reactions is correct?

$$(1) \quad \Delta S_1 > \Delta S_2 > \Delta S_3$$

$$(2) \quad \Delta S_1 > \Delta S_2 = \Delta S_3$$

(3)
$$\Delta S_1 < \Delta S_2 < \Delta S_3$$

$$(4) \quad \Delta S_1 > \Delta S_2 < \Delta S_3$$

- **61.** Which one of the following compounds does not decolourise potassium permaganate solution?
 - (1) Styrene

- (2) Benzene
- (3) Propionaldehyde
- (4) Oxalic acid

62.	Wh	Which one of the following compound is optically active?				
*	(1)	Ethyl benzoate (2)	Succinic acid			
85	(3)	Salicylaldehyde (4)	Sucrose			
63.	Wh	nich of the following compounds is	acidic ?			
	(1)	Allyl alcohol (2)	Aniline			
	(3)	Acetophenone (4)	Phenol			
64.	Hov	w many isomers are there for dich	orobenzene 2			
	(1)		2			
*	(3)	,	4			
		(1)	T 10 g			
65,	Whi	ich one of the following statement	is false ?			
	(1)	Cis and trans isomers of a con	npound will, in general, have			
		different melting points				
	(2)	Enantiomers will have same dipo	le moments			
	(3)	Diastereomers will always have sa	ame solubilities			
	(4)	Asymmetric centre is not essentia	l for chirality			
66.	The	number of degree of freedom at th	e triple point of water is:			
	(1)	0 (2) 1 (3)	2 (4) 3			
		17	**			
\$1			Dana			

67.	Which one of the following statements is false?						
	(1)	p-nitrophenol has an higher melting point than o-nitrophenol					
	(2)	Aniline is less basic than benzyl amine					
	(3)	t-butanol forms a more stable carbonium ion than isopropanol					
	(4)	Pyridine is more basic than ammonia					
6 8.	Mar	konikof's rule applies to :					
	(1)	Electrophilic substitution of aromatic compounds					
	(2)	Electrophilic addition of alkenes					
	(3)	Steric strain					
	(4)	Relative stabilities of carbanions					
69.	Wha	at is the major product when t- butylbenzene is nitrated?					
	(1)	p-nitro-t-butylbenzene					
	(2)	2,б-nitro-t- butylbenzene					
	(3)	o-nitro-t-butylbenzene					
	(4)	m- nitro-t- butylbenzene					
	1171	at product will be obtained if acetaldehyde is oxidized?					
70.		(a) Monthonal					
	(1)	Ethanor					
	(3)	Acetic acid (4) Acetamide					
		1 9					
		18					

71.	Wh	at is the main compound of c	ookir	ng gas ?
	(1)	Propane	(2)	Ethanol
	(3)	Butane	(4)	Methane
72.	The	boat and chair from of cyclo	hevar	ne are :
		*		
	(1)	Isomers	(2)	Enantiomers -
	(3)	Diasteromers	(4)	Conformers
7 3.	$S_N 1$	reaction involves a	.as aı	n Intermediate :
	(1)	Carbanion	(2)	Carbonium ion
ė	(3)	Pentavalent carbon species	(4)	Free radical
74.	Whi	ch one of the crystal unit cell	s doe	es not have all axes orthogonal
		ne another?		
	(1)	Tetragonal cell	(2)	Rhombohedral cell
	(3)	Orthorhombic cell	(4)	Cubic cell
75.	If the	half life of a radioactive		
	of +1-	and the of a radioactive part	icle is	s 12 minutes what percentage
	oi th	e total number of particles wi	ll ren	nain after 10 minutes?
6	(1)	56 (2) 54	(3)	17 (4) 60

						v.		
76.	The	RMS speed o	f nitro	ogen molect	ules a	t 300 K is 516	5 m/s	. What will
	be the RMS speed of helium atoms?							
	(1)	3612 m/s			(2)	1365 m/s		
	(3)	965 m/s	**		(4)	1806 m/s		GE C
77.	The	cryoscopic co	nsta	nt of water	is 2 º(C/m. What wi	ll be t	he freezing
	poin	t of 1 kg of v	vater	in which 1	.1 kg	of ethylene g	glycol	$(C_2H_6O_2)$ is
	diss	olved?						
	(1)	-36 °C	(2)	-12 °C	(3)	-24 °C	(4)	23 °C
78.	Wha	at solid produ	ucts i	s obtained	wher	a calcium car	bide	reacts with
	wate	er?	100					
ā	(1)	CaCO ₃	(2)	Ca(OH) ₂	(3)	Ca	(4)	CaCl ₂
79.	Whi	ch of the foll	owing	g are exothe	ermic	processes?		10
	(a) <i>I</i>	A match burn	ıs;					
	(b) 1	molten candl	e wax	solidifies;				*
	(c)	kerosene eva	porat	es				
	(1)	All three			(2)	(a) and (b)		
	(3)	(a) and (c)			(4)	(b) and (c)	(2)	
		*						

80. What will be the main product in the following reaction?

$$(H_3C)_3C-C1 + C_2H_5O$$

- (1) C₂H₅O-C(CH₃)₃
- (2) $(H_3C)(C_2H_5)C=CH_2$
- (3) (H₃C)₃ C-OH
- (4) $(H_3C)_2C=CH_2$

81. Other things being equal, how will the rate of the forward reaction in the following system change if the volume of the reaction vessel is halved?

$$CO(g) + Cl2(g) = COCl2(g)$$

- (1) The rate will be halved
- (2) The rate will be decrease to 1/4 of the original value
- (3) The rate will be double
- (4) The rate will be increase four times

82. What product is obtained when CH₃CONH₂ is treated with bromine and sodium hydroxide?

(1) CH₃COOH

(2) CH₃NH₂

(3) $C_2H_5NH_2$

(4) CH₃CH₂Br

	*
83.	How many stereoisomers are possible for butane-2,3-dicarboxylic
	acid?
	(1) 1 (2) 2 (3) 3 (4) 4
84.	What changes will increase the equilibrium concentration of product
	C in the system, $A(g) + B(g) = C(g)$, if the ΔH° of the reaction is
	negative? Choose from the following conditions:
	(a) The adding of a catalyst,
	(b) The addition of an extra amount of substance A,
	(C) Raising of the temperature,
	(d) Lowering the temperature
	(1) (b) and (d) (2) (a) and (d)
	(3) (c) (4) (a) and (b)
85.	What is the pH of a 0.001 M solution of sodium hydroxide?
9	(1) -3 (2) 3 (3) 11 (4) 7
86.	The reaction of copper sulphate with potassium iodide in aqueous
	medium is an example of:
	(1) Redox reaction
	(2) Disproprtionation reaction
	(3) Double decomposition reaction
*	(4) Halogenation reaction

								2				
87.	CsF	`adop	ts the N	NaCl o	crystal	str	ucture	. If the ur	nit cell	l ed	ge is l	ength
	4.02	2 Å, v	what is	the sl	nortes	t dis	stance	between t	he Cs	⁺ an	d F ic	ns in
	the	crysta	al? .									
*	(1)	2.01	Å	(2)	2.84	Å	(3)	3.48 Å		(4)	4.02	Å
			- 19									
88.	Stea	ady sta	ate appr	oxima	ation fo	or th	e react	ion A	> B		> C n	nakes
	the	assun	nption,									
	(1)	d[C]/	dt = -c	[A]/a	lt		(2)	[A] + [C]	is a co	onsi	tant	
	(3)	d[B]/	dt = 0				(4)	[A] - [C]	= 0			
								50 50				
89.	Whi	ch of	the follo	wing	hydro	carl	bons h	as the mo	st aci	dic I	H ator	n ?
	(1)	Etha	ne		•		(2)	Ethylene	3 - 1 - 1 - 1			• €
	(3)	Acety	ylene				(4)	Benzene	y			
	~ .							n - 4				
90.				it(s) s	suitabl	e fo	r conv	erting be	nzoic	acio	d to b	ezoyl
	chlo	ride ?										is.
	soc	l ₂ ; Cl ₂	; PCl ₅ ;]	HCl								
			and Po				(0)	9001 -	1 01			

(4) Cl₂ and HCl

(3) PCl₅

j

SECTION - B

(i) LIFE SCIENCE

(Optional)

91.	The	oldest organisms are consider	ed to	be:
	(1)	PPLO	(2)	Archaea
	(3)	Animals	(4)	Bacteria
92.	Grai	n staining was introduced by	:	
	(1)	Robert Gram	(2)	Christian Gram
	(3)	Robert Koch	(4)	Louis Pasteur
93.		en a virus enters a cell but d	oes 1	not replicate immediately, the
•	(1)	Synergism	(2)	Symbiosis
	(3)	Mutualism	(4)	Lysogency
94.	as:		nergy (2)	from chemicals are designated Autotrophs
	(1)	Chemeral		
	(3)	Organotrophs	(4)	Prototrophs

95.	An o	organism that expends energy	y to :	grow in a habitat with a low		
	water activity in order to maintain internal solute concentrations to					
	retai	in water is:				
	(1)	Alkalophile	(2)	Aerotolerant		
	(3)	Acidophile	(4)	Osmotolerant		
96.	The	plasmids can be eliminated fro	om a	cell by the process known as:		
	(1)	Fixing	(2)	Curing		
*	(3)	Expulsion	(4)	Breaking		
97.	Prot	ein content in dry weight of S	CP is	; :		
	(1)	80-90% (2) 40-50%	(3)	60-80% (4) 20-30%		
98.	T-pl	nages are a specific class of ba	cteri	ophages with :		
	(1)	Double stranded DNA	(2)	Single stranded DNA		
	(3)	Double stranded RNA	(4)	Single stranded RNA		
99.	Sul	fonamide is synthetic	com	oound:		
	(1)	Antiviral	(2)	Antibacterial		
	(3)	Antifungal	(4)	None of the above		

100	100. Alcohol that is derived from fermentation of germinated barley grains,					
	is k	nown as :				
	(1)	Beer	(2)	Wine		
	(3)	Vodka	(4)	Rum		
101	.The	tuberculosis is caused by:				
	(1)	Mucobacterium	(2)	Mycobacterium		
	(3)	Campylobacter	(4)	Salmonella		
100	0			***		
102	. Ger	m theory fo disease was first d	emor	nstrated by:		
	(1)	Robert Koch	(2)	L. Pasteur		
	(3)	P.A. Micheli	(4)	Benedict Prevost		
103	.Cau	sal agents of severe rusts of all	cerea	al grains and cultivated gasses		
	are :					
	(1)	Puccínia spp	(2)	Salmonella spp		
	(3)	Pseudomonas spp	(4)	Fusarium spp		
				B		
104. When a disease present more or less constantly in a particular location						
	in m	noderate or severe form is calle	d as	:		
13	(1)	Pandemic disease	(2)	Epidemic disease		
	(3)	Endemic disease	(4)	Sporadic disease		

P.T.O.

	plac	ce during the multiplication of a vi	r	us?
	(1)	Attachment, release, biosynthesi	is	, maturation, penetration
3	(2)	Attachment, penetration, matura	at	tion, biosynthesis, release
	(3)	Penetration, attachment, biosyn	tł	nesis, maturation, release
	(4)	Attachment, penetration, biosyn	tl	nesis, maturation, release
106	.Whi	ich of the following groups of a	n	simals does not come under
		iterostomes :		9
	(1)	Chordata (2)		Arthropoda
	(3)	Protochordata (4)		Echinodermata
				•
107	. Wat	ter vascular system is found in t	W.	hich of the following group of
	anir	mals?		
	(1)	Echinodermata (2)		Ctenophora
	(3)	Mollusca (4)		Platyhelminthis
108	.The	e lateral line system of bony fishes	а	and sharks functions in :
	(1)	Osmoregulation		
	(2)	Gas exchange		
67	(3)	hydrodynamics		a
	(4)	Sensory preception		10 Se ap.
		and the second of		

105. Which of the following reflects the correct order of events that take

109. The first set of genes to be activated for axis specification of Drosophila						
	is during early embryonic development is:					
	(1)	Gap genes	(2)	Pair rule gene		
	(3)	Homeotic genes	(4)	Segment polarity genes		
110.	Dur	ing gastrulation the movemer	nt of	ectodermal cells to cover the		
		re embryo is known as :	01	cotoucimal cons to cover the		
	(1)	Epiboly	(2)	Delamination		
	(3)	Ingression	(4)	Invagination		
111	Class	y blook to makeomorphy many liting		omenal of anorma from vitalline		
111.		v block to polyspermy resulting	ın re	emoval of sperms from viteline		
		nbrane is accomplished by:	£6			
	(1)	Changes in membrane poten	tial			
	(2)	Cortical rotation				
	(3)	Cortical reaction				
	(4)	Acrosomal reaction		*		
110	ĭ£	and the supposed EM NoCI (M	W 50	2.4) you will dissolve:		
114.	п уо	u need to prepare 5M NaCl (M				
	(1)	1 gm of NaCl in a total volum	e of	100 ml of water		
	(2)	1 gm of NaCl in a total volum	e of	1000 ml of water		
	(3)	58.4 gm of NaCl in a total vol	ume	of 200 ml of water		
	(4)	5.84 gm of NaCl in a total vol	ume	of 100 ml of water		

P.T.O.

	overnight fasting?						
	(1)	Hepatic glycogenolysis	60				
2	(2)	Gluconeogenesis					
	(3)	Dietary glucose from intestin	e .	· ,			
	(4)	Muscles glycogenolysis					
114	. Pea	rl is formed in oysters :					
	(1)	In the shell following the entr	ry of	an irritant			
	(2)	By the mantle					
	(3)	Between the mantle and inner body					
	(4)	By calcium carbonate deposi	tion a	at any site			
115	. Imn	nunoprecipation is done to stu	dy:	e e e e e e e e e e e e e e e e e e e			
	(1)	DNA-protein interaction	(2)	Protein- Protein interaction			
	(3)	Protein - RNA interaction	(4)	DNA-RNA interaction			
116. Circadian rhythm in our body is regulated by:							
	(1)	TSH	(2)	Melatonin			
	(3)	Prostaglandins	(4)	ADH			
		and the second s					
	29						

113. Which of the following is the major source of blood glucose during an

117. In ovarian cycle:								
	(1)	Preovulatory phase occurs mainly due to section of LH						
	(2)	LH surge causes ovulation						
	(3)	Regulation of water balance in the blood						
	(4)	Filteration of blood						
118. Drinking alcoholic beverages on hot days in not safe because alcoho								
	inhibits release of the following hormone which normally help to							
	conserve water during dehydration?							
	(1)	Oxytocin	(2)	Antidiuretic hormone				
	(3)	Thyroxine	(4)	Tri-iodothyronine				
119. The bulk of CO ₂ is transported in arterial blood as:								
	(1)	Dissolved CO ₂	(2)	Bicarbonate				
	(3)	Carbamino haemoglobulin	(4)	Carboxyhaemoglobulin				
120. The volume of air breathed in and out during quite respiration is								
	known as:							
	(1)	Respiratory minute volume	(2)	Inspiratory capacity				
	(3)	Residual volume	(4)	Tidal wave				

(ii) PHYSICS

(Optional)

121	Whe	n some work is done then there will be some wastage of heat	
energy, this is in accordance with:			
	(1)	Zeroth law of thermodynamics	
	(2)	First law of thermodynamics	
	(3)	Second law of thermodynamics	

- 122.A sample of 100 gm of water is slowly heated from 27 °C to 87 °C. If the specific heat capacity of water is 4200 J/kg K then the change in the entropy of the water is:
 - (1) 7.6 J/K (2) 36 J/K (3) 42 J/K (4) 65 J/K
- 123. Newton's law of cooling is a special case of:

Third law of thermodynamics

(4)

- (1) Stefan's law (2) Kirchhaff's law
- (3) Rayleigh Jean's law (4) Joule's law
- 124. The temperature below which a gas must be cooled to be liquiefied by pressure alone is called:
 - (1) Boyle temperature (2) Critical temperature
 - (3) Curie temperature (4) Inversion temperature

- 125. If a particle is projected at an angle 30° to the horizontal with kinetic energy E then the kinetic energy at the highest point of its trajectory will be:
 - (1) E/4
- (2) E/2
- (3) 3E/4
- $(4) \quad \frac{E}{\sqrt{2}}$
- 126. A bird alights on a telephone wire stretched between two poles. The additional tension produced in the wire will be:
 - (1) Equal to the weight of the bird
 - (2) less than the weight of the bird
 - (3) Greater than the weight of the bird
 - (4) Zero
- 127. The length of a metal wire is l_1 when the tension in it is T_1 and is l_2 when the tension is T_2 . The natural length of the wire is:
 - (1) $\frac{l_1 T_2 l_2 T_1}{T_2 T_1}$

(2) $\frac{l_1 T_2 + l_2 T_1}{T_1 + T_2}$

(3) $\frac{l_1T_2 - l_2T_1}{T_1 + T_2}$

- (4) $\frac{l_1T_2 + l_2T_1}{T_1 T_2}$
- 128.A shell fired from a canon with a velocity v m/sec at an angle θ with the horizontal. It explodes into two pieces of equal masses at highest point of its path. One of the pieces retraces its path to the canon. The speed of the other piece immediately after the explosion is:
 - (1) $3 v \cos \theta m/\sec \theta$
- (2) $4 v \cos \theta m / \sec \theta$
- (3) $2 v \cos \theta m / \sec$
- (4) $v \cos \theta m / \sec$

129. Two uniform circular discs A and B of equal masses and thickness are made of materials of densities d_A and d_B respectively. If their moments of inertia about an axis passing through the center and normal to the circular surface are I_A and I_B respectively then:

$$(1) \quad \frac{I_A}{I_B} = \frac{d_A}{d_B}$$

(2)
$$\frac{I_A}{I_B} = \frac{d_{A^2}}{d_{B^2}}$$

$$(3) \quad \frac{I_A}{I_B} = \frac{d_B}{d_A}$$

(4)
$$\frac{I_A}{I_B} = \frac{d_{B^2}}{d_{A^2}}$$

130. In the half life time of radon (222Rn) is 3.8 days then how long does it take for 60% of sample of radon to decay?

(1) 4 days

(2) 4.5 days

(3) 5 days

(4) 6.5 days

131. A particle is executing simple harmonic motion with time period $T = \frac{2\pi}{3}$ and amplitude A=2 meters. What is its maximum acceleration during its motion:

(1) 6 m/sec²

(2) 18 m/sec²

(3) 9 m/sec²

(4) 36 m/sec²

132. A pure Ge crystal has intrensic carrier concent ration N_i=10¹³ /cm³ at room temperature when it is doped with antimony the hole density is found to be 10¹¹ /cm³ at room temperature the doping density, assuming that all impurity atoms are ionized, is:

(1) 10¹¹ /cm³

(2) 10^{13} /cm³

 $(3) 10^{15} / cm^3$

(4) 1012 /cm3

133. For a transistor the current gain α =0.98. I	f the transistor is ι	ısed as
an amplifier in common emitter configurat	tion and the base of	current
changes by 0.1 mA on applying the input	signal then the co	ollector
current will changes by:	9	*

(1)5 mA 4.8 mA

(3)9.8 mA (4)4.9 mA

134. Which of the following statement is wrong:

- Voltmeter should have very high resistance
- (2) Ammeter should have very high resistance
- (3) Voltmeter should be connected parallel to the device across which voltage isto be measured
- (4) Ammeter should be connected in series with the electric circuit
- 135. If two electric heaters rated P1 and P2 watts of voltage are connected in parallel across a power supply of V volts then the total power drown would be:

 - (1) $\frac{P_1 P_2}{P_1 + P_2}$ (2) $\frac{P_1 + P_2}{P_1 P_2}$ (3) $P_1 + P_2$ (4) $\sqrt{P_1 P_2}$
- 136. If the frame around which wire is wound in a moving cell galvanecemeter is metallic then its:
 - damping is increased
- damping is decreased (2)
- hysterisis loss is decreased (3)
- sensitivity is increased (4)

P.T.O.

107.	1.01	a polentionicier to be very sen	SICIVO	cuic.				
	(1)	Wire must be long		5				
	(2)	Wire must be small						
	(3) Potential drop per unit length must be small							
	(4) Potential drop per unit length must be large							
138	Two	linearly polarized light waves	s with	h their polarization planes at				
	righ	t angles two each other give ri	se to	•				
	(1)	Circular polarization	(2)	elleptical polarization				
	(3)	Linear polarization	(4)	Unpolarized light				
139. The decomposition of a ray of light into two different rays when it								
	pass	ses through calcite crystal is k	nown	as:				
	(1)	Diffraction	(2)	Refraction				
	(3)	Interference	(4)	Bifringence				
140. A thin needle of steel can be made to float in a bowl filled with pure								
	water without any external support because its weight is balanced							
	by:							
	(1)	The surface tension of water	(2)	The viscosity of water				
	(3)	The buayancy of water	(4)	The stream energy of water				

- 141. Sterm-Gerlach experiment shows:
 - (1) Discrete values for the physical quantities
 - (2) Continuous values for the physical quantities
 - (3) Uncertainty in simultaneous measurement of position and momentum of electron
 - (4) Wave nature of electron
- 142. Which of the following combinations of three identical capacitors will store maximum energy for the same voltage:
 - (1) Two in series and one in parallel across them
 - (2) Two in parallel and one in series
 - (3) All three in series
 - (4) All three in paralle
- 143. For a medium the response of conduction electrons to an electromagnetic field is determined by the relation $\vec{J} = \sigma \vec{E}$ where symbols have their usual meaning. If σ increases with temperature the medium is:
 - (1) A conductor

(2) A semiconductor

(3) An insulator

(4) A dielectric

144. In a full-wave	e rectifier	circuit	being	operate	d from	1 50H _z	A.C.	mains
frequency the	second	harmon	ic freq	uency in	the i	repple	would	l be:

(1) 25 H_z

(2) 50 H_z

(3) 100 H_z

(4) 200 H_z

145. The width of the depletion layer of a P-N jucntion diode:

- (1) Is increased under reverse bias
- (2) Is increased under forward bias
- (3) Is independent of applied bias
- (4) Is increased with high doping

146. The moderator in a nuclear reactor is used for:

- (1) Absorting neutrons
- (2) Absorting thermal energy
- (3) Slowing down neutrons
- (4) Accelerating neutrons
- 147. A measurement establishes the position of a proton with an accuracy of $\pm 1.0 \times 10^{-11}$ m. The uncertainty in the proton's position 1.00 sec later will be (Assume velocity of proton to be very-very less than velocity of light and h = 1.054×10^{-34} J.sec)
 - (1) 2.35 × 10⁻¹² m
 - (2) 1.15 ×10⁻¹³ m
 - (3) 3.15 ×10⁻¹⁹ m
 - (4) 3.25 ×10⁻¹⁶ m

- 148. Ultraviolet light of wave length 350 nm and intensity 1.00 w/m² is directed at a potassium surface. If the work function for potassium surface is 2.2 eV then the maximum K.E of the photoelectrons emitted from the surface will be:
 - (1) 1.2 eV
- (2) 1.3 eV
- (3) 1.4 eV
- (4) 1.5 eV
- 149. An electron collides with a hydrogen atom in its ground state and excites it to a state of n=3. How much energy was given to the hydrogen atom in this collision (Given that ionization energy of hydrogen atom is 13.6 eV)
 - (1) 10.4 eV
- (2) 9.5 eV
- (3) 12.1 eV
- (4) 6.1 eV
- **150.** Which of the following statement is not correct about LASER light beams:
 - (1) The light is very nearly monochromatic
 - (2) All the waves in the light are exactly in phase with each other
 - (3) A LASER beam courages hardly at all
 - (4) The beam is extremely intense

(iii) GEOLOGY

(Optional)

151. As	per the	principle of	cirs-cross	cutting
----------------	---------	--------------	------------	---------

- (1) Intruded rock is older than intruding rock
- (2) Intruded rock is younger than intruding rock
- (3) Both are of same age
- (4) There is no time relationship between them
- **152.** Which of the following physical divisions of India is represented by a triangular plateau?
 - (1) Extra peninsular
- (2) Peninsular
- (3) Indo-gangetic Plains
- (4) None of these

153. "Structural highs" in Indo-gangetic plains are:

(1) Thrust faults

(2) Flysch zone

(3) Buried hills

(4) Synclinorium

154. Siwalik rocks are present in:

- (1) Outer Himalaya zone
- (2) Lasser Himalaya zone
- (3) Central crystalline axis
- (4) Tethyan Himalaya zone

155. Indus suture zone has characteristic rock type known as:						
	(1)	Ophiolite	(2)	Gondite		
	(3)	Charnockite	(4)	Khondalite		
156. Select a lithostratigraphic unit from the following:						
	(1)	System	(2)	Lithodeme		
	(3)	Formation	(4)	Biozone		
157. Which of the following eras has three periods?						
	(1)	Hadean	(2)	Mesozoic		
	(3)	Palaeozoic	(4)	Cenozoic		
158. Mesozoic Era is also known as :						
	(1)	Age of Mammals	(2)	Age of reptiles		
	(3)	Age of birds	(4)	Age of fishes		
159. When the most primitive fishes did first appeared?						
	(1)	Devonian	(2)	Permian		
	(3)	Ordovician	(4)	Cambrian		
160. In which type of preservation, the hard parts of the organism becomes heavier and denser?						
	(1)	Replacement	(2)	Petrifaction		
	(3)	Recrystallisation	(4)	Carbonisation		

161	. Whi	ich of the following is a pseudo	tossi	1.5		
	(1)	Dendrites	(2)	Chondrites		
	(3)	Graptolite	(4)	Trilobite		
				n = 1		
162				nts due to behavioural activities		
	of a	ncient organisms is known as	:			
	(1)	Body fossils	(2)	Leaked fossil		
	(3)	Psuedofossil	(4)	Trace fossil		
163	.Wh	at is meaning of extinction in f	ossil	record?		
	(1)	It has suddenly disappeared	and	never recur		
	(2)	It has suddenly disappeared but recurs again				
	(3)	It number has suddenly increased and then decreased				
	(4)	Its number has suddenly decreased and then increased				
164	. Whi	ich is the greatest period of coa	al for	mation ?		
	(1)	Permian	(2)	Carboniferous		
	(3)	Eocene	(4)	Miocene		
165. Which of the following horizons of Lower Gondwana is devoid of coal						
¥		ms?		is devoid of coal		
	(1)	Barakar Formation				
	(2)	Raniganj Formation				
	(3)	Karharbari Formation				
	(4)	Barren Measure Formation				
				201		

166	.The	lignite coalfield of Tamil Nadu	is kı	nown as:			
	(1)	Panadhro Lignite	(2)	Neyveli Lignite			
•	(3)	Palna Lignite	(4)	None of these			
167. Which of the following oilfields is situated in Assam?							
	(1)	Digboi	(2)	Nawagam			
	(3)	Ankleshwar	(4)	Nagapatinam			
168.	In B	ombay High, the age of hydro	carbo	on bearing liomestone is:			
	(1)	Oligocene	(2)	Eocene			
	(3)	Miocene	(4)	Palaeocene			
169	169. Which of the following areas is famous for iron ore deposits?						
	(1)	Malanjkhand	(2)	Kudremukh			
	(3)	Zawar	(4)	Sukinda			
170. Find a copper-ore mineral from the following:							
	(1)	Chamosite	(2)	Chalcopyrite			
	(3)	Pyrite	(4)	Galena			
171	. Ma	ganite is a mineral of :					
	(1)	Carbon	(2)	Magnesium			
	(3)	Iron	(4)	Manganese			

172. Blue dust is variety of:						
	(1)	Iron ore	(2)	Copper ore		
	(3)	Manganese ore	(4)	Chromite ore		
17	3. Wh	ich of the following is not mech	nanio	cally disintegrated sedimentary		
	roc	k ?				
	(1)	Sandstone	(2)	Conglomerate		
	(3)	Shale	(4)	Limestone		
17	4. In t	he clastic sediments, the size	of co	bbles of range in between :		
	(1)	4-64 mm	(2)	64-256 mm		
8	(3)	2-4 mm	(4)	2-1/16 mm		
175. The sandstones with more feldspar than quartz are called:						
	(1)	Arkose	(2)	Greywacke		
	(3)	Quartz arenite	(4)	None of these		
176. Which of the following is a primary sedimentary structure?						
	(1)	Convolute bedding	(2)	Concretions		
ī	(3)	Solution structure	(4)	Stratification		

16P/290/7

177	177. The epizone of metamorphism is characterized by:					
	(1)	Low grade metamorphism				
	(2)	Medium grade metamorphism				
	(3)	High garde metamorphism				
	(4)	Load metamorphism				
178	.Whi	ch of the following metamorph	ic roc	cks is equivalent of shales and		
		dstone?				
	mu	istone ?				
	(1)	Schist	(2)	Geneiss		
	(3)	Quartzite	(4)	Slate		
179. Select from the following an acidic igeous rock:						
	(1)	Basalt	(2)	Granite		
	(3)	Syenite	(4)	Diorite		
180. Which of the following is considered as quartz free igneous rock?						
	(1)	Nephaline Syenite	(2)	Lamprophyre		
	(3)	Dolerite	(4)	Rhyolite		

ROUGH WORK रफ़ कार्य

ROUGH WORK रफ़ कार्य

ROUGH WORK एफ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्घारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें। 14. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 13. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित
- दंड का/की, भागी होगा/हीगी।